
1 =AD-A124 439 FR GRIN OPTIMIZING ALGORITHM FOR ADAPTIVE ARRAYS(U) OHIO 1/11
STATE UNIY COLUMBUS ELECTROSCIENCE LAS

AL-KNATIB ET AL. SEP 75 ESL-4063-2 N99919-75-C-0179

UNCLASSIFIED F/G 12/1i N

L



4'.2

*1.25 *1 16

,JICROCOPY RESOLUTION TEST CHART

NkTtO#L BUREAU Of STADAROS-1963-A



*0 PHOTOGRAPH THIS SHEET

41
S LEVEL [NYHITORY

z ,r, effOor-s E5 -o 404- 7.7"
DOCUMM~l IDEN'TIFICATION

Cov~tftt 8000O(9 - -7S-C -0/77 et

* Approvd for public xMie fig
SDigtgibution Un,mitd

DISTRMUTION STATEMENT

ACCESSION FOR
mTI GRAM

TAB DTIC
UNANNOUNCED 0ELECTE

3UIFFICAIONFEB 16 0
Dy

AVAULADIUT CODES
-v AVAIL AND/OR SPEOL DATE ACCESSIONED

~~DISTRIBUTON STAIMP

83 02 010 042(-II

DATE RECEIVED IN DIC

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2

FORM DOCUMENT PROCESSING SHEET
DTIC ,OCT 70A

Z = ! " . ; . ' . -, . ; -: , - . . , .* ; . '" * 7 " -, " .. - "- . -" '



'A GAIN OPTIMIZING ALGORITHM FOR ADAPTIVE ARRAYS

H. H. A1-Khatib and R. T. Compton. Jr.

EI6lrsd0Mcetf Lahoaty
D" on! of Electdwcl Enghmm!fn

O~h. .. Columbeue.Ob~ 4212

Quat;berly Technical Report 4063-2

September 1975

Contract N00019-15-C-O179

AP-W FO 
IUCME

I Department of the Navy
* I Naval Air System Commnand

Washington, D.C. 20361



NOTICES

When Governmant drawings, specifications, or other data are
used for any purpose other than in connection with a definitely
related Government procurement operation, the United States
Governmnt thereby incurs no responsibility nor any obligation
hatsoever, and the fact that the Government my have formulated,

* furnished, or in any way supplied the said drawings, specifications.
or other data, is not to be regarded by implication or otherwise as
in any manner licensing the holder or any other person or corporation,
or conveying any ri ts or permission to manufacture, use, or sell
any patented invention that may in any way be related thereto.

ii

"-I

............- I



W - . ' .. ., " " * . .- -'W - -. "•" - .. . . . . , .o. .. - . .'

d UNCLASSI FIED
SECURITY CLASSIFICATION OF THtS PAGE (

1
0hen Data Entered)

READ INSTWUCT , &:REPORT DOCUMENTATION PAGE BEFORE COMPLEI -I.
,*;,*1. REPORT NUMBER JGOVT ACCE:SSION NO' 3. RECIPIENT'S CATALOG NUMBER

4 . TITLE (adSbtte . TY58& TPORT & PERIOD COVERED

A GAIN OPTIMIZING ALGORITHM FOR Quarterly Technical Report
ADPTVEARAY 6. PERFORMING ORG. REPORT NUMBER

,-.,, ESL 40% 3-2
7. AUTHORa) S. CONTRACT OR GRANT NUMBER(s)

H. H. Al-Khatib and R. T. Compton, Jr. Contract N00019-75-C-0179

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA & WORK UNIT NUMBERS
The Ohio State University ElectroScience
Laboratory, Department of Electrical Engineering
Columbus, Ohio

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Department of the Navy September 1975
Naval Air Systems Command 13. NUMBER OF PAGES

Washington, D.C. 20361 38
14. MONITORING AGENCY NAME & ADDRESS(If different fromd Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified
ISa. DECLASSIFICATION/DOWNGRADING

SCHEDULE

19. DISTRIBUTION STATEMENT (of this Report)

WP"%D FOR PUBLIC WM-
DISTRIBUTION UNUMITED

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

:.

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side it necessay and Identify by block number)

Gain Optimizimg algorithm
Adaptive Arrays
Adaptive Antennas

1 *, 20. ABSTRACT (Continue on reveres side if necessary and identify by block number)

': An algorithm for optimizing the gain of an adaptive antenna
system Is discussed in this report. The gain optimization is

~ -. accomplished by a constrained gradient-search technique. The
algorithm is presented and some simple examples show ing how the. -
gain Is optimized in a two-element array are given. /The convergence
and stability of the algorithm are also discussed.

DD 'AN7 1473 EDITION OF I NOVSIS OSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dote ntorered)

E -- -. 4* ...-w.* . -.7.. .,,.€ ,.,; -, . .- . . ,-.- ... . , . . .,, . .. . . . . . . . ....



CONTENTS

Page
.- I.INTRODUCTIONI

II. A GAIN OPTIMIZING ALGORITHM 1

CONCLUSIONS 25

REFERENCES 34

APPENDIX I 36

APPENDIX II 37

U-:

9.,

9. 9 . 9 - A*- - - - - - -

-o 9 * . . . . . . .* * *..



w7.

I, INTRODUCTION

This report discusses an adaptive algorithm for optimizing
the gain of an antenna array on an incoming signal. The algorithm
is based on a steepest-ascent maximization of the array output

• -... power, subject to a constraint on the array weights.

This algorithm is under investigation for use in conjunction
* with a power inversion adapt ve array +4--, a modified version of

the LMS adaptive array-4-,-I]. A power inversion adaptive array can
provide significant protection from interference in a spread spectrum
communication system, but it does not provide any form of beam tracking
on the desired signal. Beam tracking can be obtained, however, by
first arraying antenna elements in pairs with power inversion feed,
back, and then combining the element-pair outputs with the gain ,. - •r
optimizing algorithm described here. In-thi - 4m _wediscus- 
only the gain optimizing algorithm. The combined system will be \ -

the subject of a future report.

II. A GAIN OPTIMIZING ALGORITHM

ft - Consider an array of N antenna elements as shown in Fig. I.
For simplicity, the elements are assumed to be isotropic and non-interacting. The signal from each element, Yi(t), is passed through

a processor Pi that generates K outputs labeled Xi(t) on Fig, 1.
Each output Xi(t) is multiplied by a real weighting coefficient Wi
and then is summed to produce the array output S(t). The processor
Pi may be either a quadrature hybrid with two outputs as shown in
Fig. 2, or a tapped delay-line with K outputs, as shown in Fig, 3.
A quadrature hybrid processor (Fig. 2) provides a simple magnitude
and phase adjustment of the signal Yi(t) and is the appropriate form
of processing when the signals are narrowband. A tapped delay-line
processor (Fig. 3) provides a frequency dependent transfer function
behind each element and is appropriate for wider bandwidth signals*
The gain optimizing algorithm to be developed in this report may be

.- used with either type of processing, and an example of each will be
given below.

. .L In this report we develop an iterative algorithm for adjusting
-" the weights Wi such that the array gain is maximized on an incoming

* signal. The algorithm is based on a steepest-ascent maximization of
the array output power, subject to a constraint to prevent the weights
from going to infinity. The algorithm discussed here is in the spirit

*Reference [8) contains a quantitative comparison of the bandwidth

ft performance of quadrature hyprid and tapped delay-line processors
for a two-element array.

11
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x1+,( 13((t . t) M

,w'. '; ,Fig. 3. Array with tapped delay-line processing.

~of the LI4S algorithm developed by Widrow, et al. [6], and discussed

in many reports on adaptive arrays [7,9). The general properties of
constrained gradient techniques have been discussed by Eveleigh [10)

!:. and by Gill and Murray [11).

Let us assume that each of the signals Xi(t) is sampled periodic-
ally in time, with an interval between samples equal to LAt. Let Xi(J)denote the value of X(t .) at the jth sampling instant and also let

(() x(j) x 2(j)

Fig. 3 XNK(i)

Sbe a column vector with components Xi(j). Also, let us assume that at
nthe jth sampling instant, the weights in the array have the value W(j),

which nay be represented by the column vector W(j);
Lai3 NKj)

bcl
the ~ ~ ~ ~ ~ ~ ~ V .t sapln intat the wegt ntearyhaetevleW.



-,', w1(j.)

W 2(j)
(2) W(j) =

WNK( Ji

We wish to develop an iterative algorithm by which these weights
can be adjusted at each sample to maximize the array gain on an incom-
ing signal.

Intuitively speaking, maximum array gain on an incoming signal
will result in the greatest output signal power from the array, Since
the array output signal is

NK
(3) S(t)= -I WiXi(t)

the average output power is

(4) 2 -(t) NK NK(4) W~~i(tXjt
i=l 1=1

where the overbar enotes the time average. We would like to choose
the weights so S2(t) is maximum. However, there is clearly no upper
limit to S2(t) if the Wi are allowed to take on arbitrary values, so
it is necessary to maximize SztT subject to some constraint on the
values of the weights. Several types of constraints appear to be
possible, but in this report we assume the weights must satisfy the
constraint equation

NK 2

(5) = I

I.e., the weights are constrained to lie on the surface of a hypersphere
of unit radius.

To optimize the gain of the array, we adopt the following
Iterative algorithm

2 4:A .
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(6) W(j+l) = W(j) + kv(j)

where

%. j W(j) = weight vector at the jth iteration(j) = weight vector at the j s iteration

W(j+l) = weight vector at the (j+l)s iteration
k = scalar constant controlling the rate of adaptation

and V(j) = a vector correction term chosen to move the weights
toward the maximum gain setting.

of The correction term (j) is obtained by taking the gradient

o S2(t) and retaining ony its component parallel to the hypersphere.
Since the gradient of S7( is given by

~ag 11.1
as

(7) V (s2) =

L nNkj
we find from Eq. (4) that

i~~I Mlt Xl (t)S(t)-

X2(t) NK X2(t)S(t)

(8) v(S) 2 X WjXj(t) 2V jl

XNK(t) XNK(t)S(t)

5
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This gradient vector can be written as the sum of two components --

one perpendicular to the weight hypersurface and one tangent to the
hypersurface. That is,

V:.' ' (9) )w  =V + v(9).. wj w±
(S2) and Vw (S2 ) are tangent and perpendicular, respect-

ivelyt the surface bf the hypersphere, as shown in Fig. 4. To

obtainVwL (M., we let N denote a unit vector normal to the surface
of the hypersphere. (n is also shown in Fig. 4.) nw will be given byV Wi

!2
R

(10) nw

WNK
R

whereI.:- J WI2 W 2 WN 2
(11) R = + W + •

V (S) is then given by (T denotes the transpose)

(12) V (S2) [ AT V(S 2 )] 'w

- IX + W2X2S + " " " + WNKXNKS ) A

2I- nw

Wi

WNK

, 6



VW (12)

SURFACE OF nw
THE HYPERSPHERE- V w (j 2 )

).i Fig. 4. Perpendicular and tangential components of Vw( ).

By subtracting vw  () from Vw(S ) (see Eq. (9)), we obtain

x IS R2W

" ! XNKS

.S 2WNK

In view of the constraint equation,
NK

(1I4) R2 - Z Wi2  = l (14)

ii;

R2

we may drop the R2 term to obtain

,.7
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JAI WIs S(X1 _ W1S)

2 W2S2  S(X 2 -W2S)

(15) v (S - .

SSXNKJ NK S(XNK - WNKS)

Since we would like to control the weights in real time, it is impractical
to compute the time average of the quantities S(Xi - WiS) indicated by
the overbar in Eq. (15). It would be possible to compute the average
of this quantity over a finite time period and consider this as an
estimate of the infinite time average. However, as is done in the LMS
algorithm (6), we will adopt the simplest estimate of all, namely, we
ignore the averaging completely and just use

s(X1 - W1S)

(16) V S(X - W2S)

S(XNK - WNKS)

The iterative algorithm given in Eq. (6) thus becomes

(17) Wi(j+l) = Wi(j) + kS(j) (Xi(j) - Wi(j)S]

Let us first consider what happens with this algorithm if the
weights are off the constraint surface for some reason. We would like
the algorithm to be such that if the weights drift off the surface,they will automatically return to the surface. With this algorithm,

it turns out they will do this. To see why, note that the second
term in Eq. (13) represents the perpendicular component of the

, gradient. In simplifying Eq. (13), we obtained Eq. (15) by dropping
the term

R=NK 22 21R WI  ,

which is unity if the weight constraint is satisfied. Note, however,
that if the weights are off the hypersphere for some reason, the
equation

8
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[Wl 2 -l

will not hold. Hence, the second vector in Eq. (15) will be parallel
to the perpendicular component of the gradient, but will have the
wrong magnitude. If, for example,

O 2

the vector

(18)
WNKS

~has a greater magnitude than Vw1 (S2), Then in Eq, (15), in the
second term, we subtract a vector greater than the perpendicular
coni@_9 nent of Vw( 2). Note that since the perpendicular component of

:! Vw(S z ) always points outward away from the origin, (we can always
- increase the output power Z from the array simply by increasing all

weight coefficients in proportion), the second term subtracted in
~Eq, (15) overcorrects for the perpendicular component and the resultingWI total vector in Eq. (15) points back toward the hypersphere; i.e.,

it has the correct parallel component but has a perpendicular conmpon-
i'i ent pointing inward. This inward perpendicular component will cause

the weights to move back onto the constraint surface.

~In a similar way, if

W. W2 <I

the second term in Eq. (15) will have a smaller magnitude than the
perpendicular component of Vw(S). The net vector in Eq. (15) will
not have its perpendicular component completely cancelled--there will
be a residual radial component, which will move the weights back out

itoward the surface.

weig Thus, we see that dropping the term

Xw 1i2 = l
in going from Eq. (13) to Eq. (15), which was done to simplify the

otalgorithm, is important because it makes the weights always tend
toward the constraint surface.

.>
In" 'a . .-mi" . . -.a. . •9
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Finally, we discuss the stability of the iterative algorithm
in Eq. (17). Because the signals are sampled at time increments At
and a correction is applied to the weights at each sample instant,
the system controlling the weights may be viewed as a sampled data
control system. Hence, we may expect that if the loop gain constant
k is too large, the system will become unstable.

To obtain an idea of the suitable range of values for k, let us
suppose that in the steady state, the ith array weight will have the
value Woi. (Note that the final steady-state solution is not unique --
there are many sets of array weights that will maximize the array
gain toward a given signal. Woi represents one possible set of steady-
state weights.) Suppose at the th iteration, Wi(j) differs from
Woi by AWi (j):

(19) Wi(J) = Woi + AWi(J)

Using this equation in Eq. (17) yields

(20) Woi + AWi(J+l) = Woi + AWi(j) + kS(j)[Xi(j) - WoiS(j)-AWi(j)S(j)]

Since W i is a steady-state solution to the weight iteration equation,
"-* Woi wilT have the property that the average value of the quantity

S(j) [Xi(J) - WoiS(j)]

is zero; i.e., in the steady-state, the correction term in Eq. (17)
will average to zero over many samples, so both Wi(j) and Wi~j+l) assume
the same value, Wo. Cancelling the Woi term and dropping the term
S(j) [Xi(J) - Wi S(J)] from Eq. (2) leaves

(21) AWi(j+l) = AWi(j) - kS(j)AWi(j)S(j)

= AW.(j) [I - kS2 (j)

In order for the algorithm to converge, the average value of the
factor 1 - kS2(j) must be such that

(22) AWi(i+l) 2
" (22)= II ks 2(i)i < 1

10
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so that at successive iterations the difference between Wi(j) and
Woi becomes smaller. To satisfy Eq. (22), k must lie in the range

(23) 0 < K < 1

Furthermore, since

(24) S(j) = xTw = wTx

we have

(25) S(j)= wTxXTw

Note that the constraint equation

" W 2 = 1

implies tbal-_he vector W is a unit vector, Hence, the maximum possible
value of SZ(t) will equal the maximum eigenvalue of the matrix

.(26) ,= XXT

(This case will occur if the unit vector W lies along the principal
axis of 0 associated with this eigenvalue.) Thus, if x denotes
the maximum eigenvalue of t, the feedback algorithm wil 1I1~e stable
as long as k lies in the range

(27) 0 < k <

2xmax

We can obtain a more readily usable upper bound for k by noting that

NK
(28) Amax ITrace t Xi (t)

so the algorithm will be stable if k is restricted to the narrower
range

I1

-r . .o



(29) 0 < I

' NK 2 x Xt(t)

1-=1
V4. Note that

NK 2

is proportional to the total power incident on the array.

Examples

Now we give two examples of the use of this algorithm. The
first example is a two-element array with quadrature hybrid processing
and a narrowband signal. The second example is a two-element array
with tapped delay-line processing and a wide bandwidth signal.

EXAMPLE 1:

Consider a two-element array as shown in Fig. 5. A signal is
assumed to propagate into the array from an angle relative to
broadside. (We assume the antenna elements to be isotropic and non-
interacting.) We will assume also that there is no noise, As a
result, the received signals in the elements are given by

(30) Yl(t) - a cos [wo t]

(31) Y2(t)= a cos Eot-*o

where a is the amplitude of the signal, wo is the carrier frequency,
and is the interelement phase shift due to the propagation delay:

(32) 0= 2 sin

0

(L is the element spacing and Ao is the free-space wavelength.) The
signal Yl(t) is arbitrarily chosen to have zero electrical phase
angle.

12
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4 Y2(1') Y1(t

QH OH

X4 (t) X 3(t) X()XIMt

W43W 2 WI

4S

Fig. 5. A two-element array with quadrature hybrids,

The signal from each element is passed through a quadrature
hybrid; the signals out of the hybrids are denoted by Xi(t). Xl(t)
and Xj(t) are the in-phase and quadrature components, respectively,
of Yj( t), and X ()and X4(t) are the in-phase and quadrature comn-

ponents of V t3.tThus, we have

- (33) X1 t) = a cos (wot)

(34) x2(t) = a sin No~t)

(35) X 3(t) = acos (wt - 0 )

(36) X4 t) = asin(wot - 0)

13



. A Fortran computer program was written (see Appendix I) to

simulate the behavior of the iterative algorithm in Eq. (17). In
the examples to be shown below, we have arbitrarily chosen

(37) a =

(38) L = 0 /2 (half-wavelength spacing),

and for the initial value of the weight vector,

(39) W =  0

(Note that this satisfies the constraint equation.)

Some results of this simulation ar displayed in Figs. 6 to 13.

In Figs. 6 and 7, the desired signal arrives from broadside
(e = 00). Figure 6 shows the transients that result in the four
weights, and Fig. 7 shows the final array pattern after the weight
transients have ended. It may be seen that the beam maximum points
in the proper direction, and it can be shown that the final array
pattern has the maximum possible gain in the direction of the desired
signal.* Figures 8 and 9 show similar results for the case when the
desired signal arrives from e = 300. Figures 10 and 11 show e = 600,
and Figs. 12 and 13 show 6 = 900. In all cases, the final weights
in the array yield a maximum possible gain in the signal direction,
and it can be seen from the patterns how the beam is steered toward
the signal.

*For a broadside signal, maximum gain occurs when W= W3 and
.- W2 - V4

14
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Fig. 8. Weight transients, 6=300 (quadrature hybrids).
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EXAMPLE 2

We again consider a two-element array but with a two-section
tapped delay line processor behind each element, as shown in Fig. 14.
Each delay line section is a quarter wavelength long at the center

(:'1 frequency of the signal.

L ______'

L
X4(t) x1(t

(T) 4 (T)

x5(t) X2(t]

(T) (TI?

S (t)

Fig. 14. A two-element array with tapped delay-lines.

An amplitude modulated signal is assumed to propagate into the

array and to produce element signals

(40) Yl(t) = all + cos wmt] cos [wo t]

23
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(41) Y2(t) = a[l + cos Cm(t-T)] cos [Wo(t - T)]

where a is the amplitude, wm is the modulation frequency, wo is the
carrier frequency, and r is the propagation time delay between elements,
given by

(42) csin
C

Each delay line section (between taps) is a quarter wavelength long
at frequency w. and hence causes a time delay T equal to

°" T(43) T =

Thus

(44) Xl(t) = Yl(t)

(45) X2(t) = Y1(t - T)

(46) X3(t) = Yl(t - 2T)

(47) X4(t) = Y2(t)

(48) X5(t) = Y2 (t - T)

and

(49) X6(t) = Y2(t - 2T)

The feedback algorithm in Eq. (17) has been simulated in this
S." problem (see Appendix I) with the following parameter values

(50) a 1

(51) Wm

"" }'0

(52) L

24
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and the arrival angle 0 - 00, 300, 600, and 900. The initial
weight vector was chosen to be

1
0

0
0

The weight transients and the resulting array patterns (computed at
frequency w ) are shown in Figs. 15 through 22.

1-L.
Figures 15 and 16 show the weight transients and the final

array pattern (at frequency wo) when o = 00. Figures 17 and 18 show
similar results for 0 = 300, Figs. 19 and 20 show 0 = 600, and Figs.
21 and 22 show 0 = 90. In all cases, the resulting weight settings
maximize the pattern response toward the signal.

CONCLUSIONS

This report has discussed an iterative algorithm for adjusting
the weights in an adaptive array to maximize the array gain on an
incoming signal. The algorithm is based on a steepest-ascent maximiza-M. tion of the array output power subject to the constraint that the
sum of the squares of the array weights is constant. It was shown
that the algorithm prevents the weights from drifting away from the
constraint surface and also that the algorithm is stable for a
suitable range of the feedback gain constant.

Two examples showing that the algorithm does optimize gain were
presented, one with a CW signal'and guadrature hybrid processing
behind the elements, and the other with a modulated signal and tapped
delay-line processing behind the elements.

25
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Fig. 17. Weight transients. e=30° (tapped delay-lines).
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"': Fig. 19. Weight transients, e=60° (tapped delay-lines).
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00'-80.1 -7310: 1-01-0 -0 2 .- 0 0- . 2. 3. YO1O 0 7 0 :O SO.

.THETA

Fig. 20. Final pattern, e .600 (tapped delay-line).
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I 'Fig. 21, Weight transients, = 900 (tapped delay-line).
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S Fig. 22. Final pattern, e = 900 (tapped delay-line).
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